MP2I - Lycée Carnot - 2024/2025 Informatique - DS4 1,@

Devoir en temps limité n°4 - 3h

Calculatrices interdites

1 Questions de cours

1. Qu’est-ce que la barriére d’abstraction ?

Programmer derriére la barriére d’abstraction, c’est programmer sans savoir comment une structure de don-
nées a été implémentée. On utilise que ses primitives.

Cela permet la modularité du code : si quelqu’un fait une mise a jour du code de la structure, le programme
derriere la barriere d’abstraction continue de fonctionner car il ne suppose que la correction des primitives.

2. Quelles sont les primitives de la structure de données liste ?

m Créer une liste vide,

m Tester si une liste est vide,

m Récupérer la téte d’'une liste,

m Récupérer la queue d’une liste,

m Ajouter un élément en téte d’'une liste,

m Supprimer un élément en téte d’'une liste,

m Désallouer toute la mémoire affectée a la liste.

3. Qu’est-ce qu’un maillon dans une structure simplement chainée ?
Un maillon est une petite structure de données qui stocke une donnée et un pointeur vers le maillon suivant,
ce qui permet de chainer la structure et odnc de la parcourir.

4. Enoncer une implémentation possible d’une file et rappeler briévement son fonctionnement, en utilisant un ou
des dessins.
cf. cours

5. Savoir-faire : Dessiner le graphe de flot de controle d’un code, Déterminer des jeux de tests qui
couvrent les arcs

Dessiner le graphe de flot de contréle du programme suivant et donner un jeu de tests permettant de couvrir
tous les arcs. Quelle erreur peut on manquer, méme avec un jeu de test qui couvre tous les arcs ?

Int a =t[0] ;

mllzl; ' \
e

Retun a ;

Le jeu de tests (m=-1, n=0, t un tableau vide), (m=1,n=2, t quelconque de taille 2), (m=12, n=3, t quelconque
de taille 3) suffit pour tester tous les arcs.

Ceci permet de repérer des erreurs : boucle while qui ne termine pas, on ne renvoie pas de valeur sin < m et
n<1

Pour le test (m=42,n=0,t un tableau vide) I'instruction int a = t[0]; est exécutée. Or elle provoque une erreur
de segmentation. Notre jeu de tests précédent ne suffisait pas pour détecter cette erreur.

2 Exercices en C

Exercice 1 Implémentation d’une file circulaire en C

MP2I - Lycée Carnot - 2024/2025 Informatique - DS4 2,@

Savoir-faire : Implémenter une file a partir de maillons chainés et mener a bien 'implémentation quand
on me propose des structures ou types adaptées, Déterminer la complexité d’'un programme avec des
boucles

On propose les types suivants :

typedef struct maillon {int valeur; maillonx suivant;} maillon;

typedef struct file {maillonx dernier;} file;

1. Comment représenter la file vide avec cette implémentation ? Ecrire la fonction filex creer() qui crée et renvoie
un pointeur vers une file vide.

La file vide n’a pas de maillon. On représente donc la file vide par un pointeur NULL dans dernier.

filex creer(){
filex f = malloc(siezof(file));
f->dernier=NULL;
return f;

}

2. Ecrire la fonction bool est_vide(filex f) qui vérifie si la file est vide.

bool est_vide(filex f){
assert(f!=NULL);
return f->dernier == NULL;

}

3. Faire un dessin de la file quand elle ne contient qu’un seul élément x. Ecrire une fonction
maillonx cree_maillon(int x) qui crée un maillon de valeur x qui pointe vers lui-méme.

dernier
o

A

Rl

maillonx cree_maillon(int x){

maillonx res = malloc(sizeof(maillon));
res->valeur = Xx;

res->suivant = res;

return res;

}

4. Qu’a t-on oublié de vérifier dans la fonction defile proposée ? Proposer des commentaires pour la fonction.
On a oublié de vérifier que la file n’est pas vide. On peut le vérifier avec assert(!est_vide(f));

int defile(filex f){
maillonx premier = f->dernier->suivant; //Le premier maillon est pointé par le dernier maillon
int v = premier->valeur; //0n récupere sa valeur, qu'on va renvoyer
if(premier->suivant = premier){ //Si la liste est vide apres defilement, on met dernier a NULL
f->dernier = NULL;
}
else{
f->dernier->suivant = premier->suivant; /*0On change la fleche du dernier pour qu'elle
aille au nouveau premierx/
}
free(premier); //0n libere la mémoire
return v;

}

5. Ecrire la fonction int coupdoeil(filex f) qui regarde le prochain élément sans le défiler.
On déduit de defile.

int coupdoeil(filex f){

assert(!est_vide(f));

maillonx premier = f->dernier->suivant; //Le premier maillon est pointé par le dernier maillon
int v = premier->valeur; //0n récupere sa valeur, qu'on va renvoyer

return v;

}

MP2I - Lycée Carnot - 2024/2025 Informatique - DS4 3,@

6. Ecrire la fonction void enfile(filex f, int x). On fera attention au cas ou la file est vide. On rappelle qu'on
enfile a droite, donc l’élément enfilé devient le dernier élément.

void enfile(filex f, int x){
maillon* m = creer_maillon(x);
if (est_vide(f)){
f->dernier = m;
}
else{
maillonx prec = f->dernier; //l'ancien dernier
f->dernier = m; //m est le nouveau dernier
m->suivant = prec->suivant; //m pointe vers le premier
prec->suivant = m; //prec pointe vers m
}
}

7. Ecrire la fonction int detruire(filex f) qui libére toute la mémoire affectée a la file.

void enfile(filex f, int x){
while(!est_vide(f)){
defile(f); //defiler supprime un maillon

}

free(f); //on termine de libérer la mémoire

}

8. Donner la complexité de chacune des fonctions précédentes.

A part dans detruire on a pas fait de boucle. Donc toutes les fonctions sont en temps constant sauf détruire
qui est linéaire en la taille de la file au moment o1 on la détruit.

Exercice 2 Les palindromes Savoir-faire : Utiliser une pile.

1. A létape d), que peut ondiresic # ¢’ ?Sic=¢'?
Le principe de I'algorithme est que si ¢’ = s[i], alors ¢ doit étre s[n — 1 —z]. Si ¢ # ¢, la chaine n’est pas un
palindrome. Si ¢ = ¢’ par contre, on ne peut rien dire, il faut continuer I’algorithme pour savoir.

2. Rappeler comment écrire une fonction int strlen(charx s) qui calcule la taille de la chaine s.

int strlen(charx s){
int i = 0;
while (s[i]!='\0"){
i+=1;
}
return i;

}

3. Programmer la fonction bool est_palindrome(charx s) qui suit le principe expliqué précdemment.

bool est_palindrome(charx s){
pilex p = creer();
int n = strlen(s);
int i;
for(i=0;i<n/2;i+=1){
empiler(p, s[i]);

}
if(n%2==1){i+=1;}

bool res = true;
for(int j=i;j<n;j+=1){
if(s[j]!=depile p){
res = false;
h
}

detruire(p);
return res;

On va maintenant procéder a la preuve de ce programme.

Savoir faire : Ecrire une spécification pour un programme, Prouver la terminaison, Trouver I'invariant
sur des problemes classiques, Prouver la correction totale d’un algorithme d’une fonction a une boucle,
Déterminer la complexité d’un programme avec des boucles

MP2I - Lycée Carnot - 2024/2025 Informatique - DS4 4,@

4. Ecrire une spécification pour votre fonction. Entrées : s une chaine de caracteres.
Sortie : true si s est un palindrome, false sinon.

5. Justifier que votre fonction termine. On a utilisé 2 boucles for, donc ¢a termine.

Un invariant pour la premiére boucle est "A la fin de I’étape i, la pile contient toutes les lettres de i a 0, dans
Pordre.". La preuve est évidente, on pourra donc supposer qu’au début de 1’étape c) la pile contient toutes les lettres

de Lg] —12a0, dans 'ordre.

6. Proposer un (ou des) invariant(s) utile(s) pour la deuxiéme boucle. Conclure quant a la correction totale de la
fonction.
Un invariant est "A la fin de litération j, res vaut true si et seulement si la chaine de caracteres
s[n-1-j1s[n-j1 ... s[j] est un palindrome."
Montrons cet invariant. A la fin de la premiere itération il est correct.

m Supposons n pair, alors a la fin de la premiére boucle i valait n/2. Donc j = n/2.

La condition de la boucle compare donc s[n/2] avec s[n/2-1] et res est vaut false si et seulement
si s[n/2]#s[n/2-1], donc si et seulement si s[n/2-1]s[n/2] n’est pas un palidrome.

., n-1
m Supposons n impair, alors a la fin de la premieére boucle : valait et il est augmenté de 1 par la
n+1
condition entre les deux boucles. Donc j = 5

La condition de la boucle compare donc s[(n+1)/2] avec s[(n-3)/2] et res est vaut false si et
seulement si s[(n+1)/2]#s[(n-3)/2], donc si et seulement si s[(n-3)/2]1s[(n-1)/2]s[(n+1)/2]
n’est pas un palidrome.

Supposons 'invariant vérifié a la fin d’une itération j. On a deux cas possibles au début de I'itération j + 1 :
m Soit res vaut déja false, donc la chaine s[n-1-j]ls[n-j] ... s[j] n'est pas un palindrome et il en
est de méme pour s[n-2-j]s[n-j-1] ... s[j+1]. res ne peut pas étre remis a vrai.
m Soit res vaut true et donc s[n-1-jls[n-j] ... s[j] est un palindrome.
On rappelle que puisque j —i+ 1 éléments ont déja été dépilés, depile p est le caractére en position
L§J -1-(j-i+1) = LEJ -1-(j- [§'| +1) =n—-1-(j+1). On raisonne maintenant selon la
valeur du test s[j+1]!=depile p:

m Si c’est vrai, alors s[n-1-(j+1)]=s[j+1]. Or s[n-1-jls[n-j] ... s[j] est un palin-
drome, donc s[n-1-(j+1)]s[n-j-11 ... s[j+1] aussi. res reste par ailleurs vrai.

®m Sinon s[n-1-(j+1)1s[n-j-11 ... s[j+1] n’est pas un palidrome, et res est bien mis a
faux.

Notre propriété est bien invariante.

Pour conclure, puisque la fonction termine, notre invariant est vrai a la fin, quand j = n — 1 et s’exprime "res
vaut true si et seulement si la chaine de caractéres s[0]s[n-j] ... s[n-1] est un palindrome.". Donc la
fonction renvoie vrai si et seulement si la chaine est un palindrome.

7. Quelle est la complexité de la méthode sachant que toutes les primitives s’effectuent en temps constant (sauf
detruire qui est linéaire) ¢
On note n la taille de s. strlen(s) est en O(n).

La premieére boucle fait un nombre d’itérations inférieur a n et a chaque itération, elle fait un nombre constant
d’opérations élémentaires. Sa complexité est en O(n).

La deuxiéme boucle fait un nombre d’itérations inférieur a n et & chaque itération, elle fait un nombre constant
d’opérations élémentaires. Sa complexité est en O(n).

La complexité totale est en O(n).

3 Exercices en Ocaml

Exercice 3 Le tri & bulles

Savoir-faire : Comprendre un principe algorithmique nouveau. Prise d’initiative, Prouver un invariant
donné

1. Ecrire une fonction parcours : 'a array -> bool qui prend en entrée un tableau t et fait un parcours du
tableau en faisant les échanges nécessaires. La fonction renvoie un booléen indiquant si un échange a été fait
lors du parcours.

MP2I - Lycée Carnot - 2024/2025 Informatique - DS4

let parcours t =

let n = Array.length t in

let res = ref false in

for i=0 to n-2 do

if t.(i) > t.(i+1) then begin

let sto = t.(i) in
t. (1) <-t.(i+1);
t.(i+l) <- sto;

res := true
end
done; res;;
2. Ecrire une fonction tri_bulles : 'a array -> unit qui trie un tableau avec la méthode décrite.

let tri_bulles t =
let n = Array.length t in
let res = ref true in
while 'res do
res := parcours t
done; ;

3. Montrer qu’un parcours n’effectue aucun échange si et seulement si t est trié.
Si ¢ est trié, alors pour chaque i entre 0 et n — 2, on a ¢£.(7) > ¢.(i + 1) et donc on ne fait aucun échange.

Supposons que le parcours de ¢ ne fasse aucun échange, alors pour chaque i entre O etn—2onat¢.(i) > ¢.(i+1),

ce qui signifie que le tableau est trié.

Lemme (admis) : On note ag < a7 < ... < a,-1 les éléments d’'un tableau ¢, ici numérotés selon leur valeur, pas

selon leur position dans le tableau, qui peut étre quelconque.

Si le sous tableau de ¢ entre les indices & € [|0,n — 1|] et n — 1 est exactement [|ax; aps1;...; @n—1|], alors apreés un
itération de parcours sur ¢, le sous tableau de ¢ entre les indices £—1 et n—1 est exactement [|ar—1; ar; ap+1;...;an-1l].

En particulier si le maximum a,_; du tableau n’est pas en derniere position, alors le parcours met a,_; dans la

casen — 1.

4. Montrer la correction totale de votre algorithme.

Icila méthode dévie de ’'ordinaire. En effet, si on avait terminaison, alors d’apres la question 3 on pourrait
directement conclure que ¢ est trié.

Reste & montrer la terminaison et dans ce cas précis, il n’y a pas de variant évident. On va donc montrer un
invariant qui nous aidera a trouver un variant.

Soit ¢ un tableau de longueur n et constitué des éléments ag < a1 < ... < a,-1 rangés dans un certain ordre.
On montre l'invariant "A la fin du i-eme parcours, le sous-tableau entre les indices n — i et n — 1 (inclus) est
trié et les éléments situés dans le reste du tableau sont inférieurs a ¢[n —i]".

Au premier parcours, on sait que si le maximum de ¢ n’était pas en dernieére position, alors il I'est désormais.
Donc le sous tableau entre les indices n—1 et n—1 est trié et tous les autres éléments du tableau sont inférieurs
at[n—-1] = a,_1 car c’est le maximum.

Supposons maintenant avoir réalisé i parcours et que le sous-tableau entre les indices n — i et n — 1 (inclus)
est trié et les éléments situés dans le reste du tableau sont inférieurs a ¢[n — i].

On effectue un i+1-éme parcours. Initialement le sous-tableau de ¢ entre les indices n—1 et n—1 est exactement
[lan_i;...;an_1]|]. Donc d’apres le lemme apres le i+1-éme parcours le sous-tableau de ¢ entre les indices n—i—1
et n — 1 est exactement [|a,_;_1;...;an_1]].

Ainsi le sous-tableau entre les indices n — (i + 1) et n — 1 (inclus) est trié. De plus il n’existe que i éléments
plus grands que a,_;_1 dans ¢, et ils sont tous & sa droite. On en déduit que tous les éléments situés dans le
reste du tableau sont inférieurs a ¢[n — (i + 1)].

Ainsi notre propriété est bien invariante. Le nombre d’éléments du tableau qui ne sont pas a leur place (celle
qu’ils occupent dans la version triée du tableau) diminue strictement, puisqu’a chaque parcours I'indice sépa-
rant le tableau non-trié du tableau trié diminue d’au moins 1 d’apres I'invariant.

Remarque : Ici la condition de fin choisie est intimement liée au fait que le tableau soit trié. La seule chose
qui nous permet de caractériser "a quel point le tableau est trié" est I'indice qui apparait dans 'invariant.

Exercice 4 Trier les copies

Savoir-faire : Utiliser une pile

MP2I - Lycée Carnot - 2024/2025 Informatique - DS4

o

On crée deux piles auxilaires : une pour les copies MP et une pour une copie CCINP. On vide la pile de copies en
rangeant chaque copies dans la pile auxiliaire adaptée.

Finalement on vide la pile avec les copies ccinp dans la pile initiale, puis on vide la pile avec les copies mines-ponts.
Remarque : on conserve ainsi 'ordre alphabétique.

let arrange p =
let pmp = Stack.create() in
let pccinp = Stack.create() in

while not (Stack.is_empty p) do
match Stack.pop p with
| CCINP nom -> Stack.push (CCINP nom) pccinp
[MP nom -> Stack.push (MP nom) pmp

done;

while (not Stack.is_empty pccinp) do
Stack.push (Stack.pop pccinp) p

done;

while (not Stack.is_empty pmp) do
Stack.push (Stack.pop pmp) p

done;

Exercice 6

Utiliser une pile, Déterminer la complexité d’un programme avec des boucles

’

Trier une pile

1. Ecrire une fonction insere : 'a -> 'a Stack.t -> unit qui prend en entrée un élément x et une pile p triée
et insére ’élément x dans p de sorte a ce qu’elle reste triée. La pile doit contenir a la fin les éléments qu’elle
contenait déja, avec en plus x.

let insere x p =

2. En déduire une fonction tri_pile : 'a Stack.t -> unit qui trie la pile.

let paux = Stack.create () in
while Stack.peek p > x do

Stack.push (Stack.pop p) paux;
done;

Stack.push p x;
while not (Stack.is_empty (Stack.peek paux)) do

Stack.push (Stack.pop paux) p;
done; ;

let tri_pile x p =

let paux = Stack.create () in

while not (Stack.is_empty (Stack.peek paux)) do
Stack.push (Stack.pop p) paux;

done;

while not (Stack.is_empty (Stack.peek paux)) do
insere (Stack.pop paux) p
done; ;

3. Quelle est la complexité du tri ? Préciser le pire cas et le meilleur cas. On note n le nombre d’éléments dans la
pile. La fonction insere vide un partie de p, ce qui coute au pire n opérations, puis rajoute un élément, c’est

en O(1). Enfin tous les éléments qui ont été sortis sont rerentrés, ce qui coute O(n).

La fonction tri_pile vide la pile, ce qui coute O(n), puis utilise n fois insere, ce qui coute 0(n2). La complexité
est donc un O(n?) dans le pire cas.
Le pire cas est si la pile est triée mais dans le mauvais sens originellement. Le meilleur cas est si la pile est

triée des le début. En effet insere a alors toujours une complexité de O(1).

Exercice 7

Le tri de crépes

Utiliser une pile, Comprendre une principe algorithmique nouveau, Déterminer la complexité d’un
9 9
programme avec des boucles, Trouver 'invariant sur des problemes classiques, Prouver la correction

totale d’un algorithme d’une fonction a une boucle, Prise d’initiative

1. Avant de commencer le tri il nous faut une fonction qui effectue le travail de la spatule. Ecrire une fonction

retourne :

crépes.

'a Stack.t -> int -> unit qui prend en entrée un pile p et un entier i et retourne les i premiéres

MP2I - Lycée Carnot - 2024/2025 Informatique - DS4 7,@

let retourne p i =

let sto = Array.make i (Stack.top p) in (xtableau accessoire pour stocker les éléments dépilésx)

for j=0 to i-1 do (*0On sort tous les éléments qui sont au-dessus de la spatule et on les met dans stox)
sto.(j)<-Stack.pop p

done;

for j=0 to i-1 do (*On remet les éléments au-dessus de la spatule sur la pile, a l'enversx)
Stack.push sto.(j) p

done; ;

2. Ecrire une fonction indice_plus_grande_crepe : 'a Stack.t -> int qui cherche et renvoie quelle crepe est la
plus grande. La crepe sur le dessus est numérotée 0, celle juste en dessous est numérotée 1, etc...

let indice_plus_grande_crepe p =
let sto = Stack.create in (xune pile auxiliairex)
let maxi = ref 0 in (*xmaximumx)
let imaxi = ref 0 in (xindice de la crepe maximalex)
let ind = ref 0 in (xindice de la crepe qu'on étudiex)
while not (Stack.is_empty p) do (*0On sort tous les éléments de la pilex)
let el = Stack.pop p in
if el>!maxi then begin (xet on les compare a maxi pour que maxi reste le plus grand élémentx)
maxi:=el;
imaxi:=!ind
end;
ind:=!ind+1;
Stack.push el sto
done;

while not (Stack.is_empty sto) do (x0On remet p telle qu'elle étaitx)
Stack.push (Stack.pop sto) p
done; !imaxi;;

3. Ecrire une fonction tri_crepes : ‘a Stack.t -> unit qui trie la pile de crépes en suivant le principe décrit.
Pour implémenter le principe décrit il nous faut la fonction retourne pour imiter le retournement, et il nous
faut aussi une maniére de déterminer la plus grande crépe. La fonction implémentée précedemment ne suffit
pas, puisqu’une fois la plus grande crépe mis a sa place, il nous faut considérer la 2éme plus grande crépe.
(qui est la plus grande du "reste de la pile" comme dit 'algorithme)

On écrit donc une variation de la fonction indice plus_grande_crepe qui prend en entrée un indice n et ignore
toutes les crépes au dela de celle d’indice n.

let indice_plus_grande_crepe_bis p n =
let sto = Stack.create () in (*une pile auxiliairex)
let maxi = ref 0 in (*xmaximumx)
let imaxi = ref 0 in (xindice de la crepe maximalex)
let ind = ref 0 in (xindice de la crepe qu'on étudiex)
while (not (Stack.is_empty p)) && (!ind<=n) do (*0On sort les éléments de la pile jusqu'a l'indice nx)
let el = Stack.pop p in
if el> !'maxi then begin (xet on les compare a maxi pour que maxi reste le plus grand élémentx)
maxi:=el;
imaxi:=!'ind
end;
ind:=!ind+1;
Stack.push el sto
done;

while not (Stack.is_empty sto) do (xOn remet p telle qu'elle étaitx)
Stack.push (Stack.pop sto) p
done; !imaxi;;

Finalement il nous faut aussi une fonction qui calcule la taille de la pile pour savoir comment retourner toute
la pile (3eme étape). (en fait on peut le trouver avec retourner et indice_plus_grande_crepe_bis mais c’est un
peu du bricolage)

let taille p =
let sto = Stack.create () in (*une pile auxiliairex)
let res = ref 0 in (xla taillex)

while not (Stack.is_empty p) do (*0On dépile et on comptex)
Stack.push (Stack.pop p) sto;
res:=!res+1

done;

MP2I - Lycée Carnot - 2024/2025 Informatique - DS4 8,@

while not (Stack.is_empty sto) do (*x0On remet p telle qu'elle étaitx)
Stack.push (Stack.pop sto) p
done; !res;;

let tri_crepes p =
let n = taille p in
for i = 0 to n-1 do (*A chaque tour de boucle, i crepes ont déja été triéesx)
let j = indice_plus_grande_crepe_bis p (n-1-i) in (*0On recherche la plus grande crepe non déja triéex

retourne p j; (*0n retournex)
retourne p (n-1-i); (*0On retourne encore, la plus grande crepe va en position n-1-1,
juste au-dessus de celles qui sont deja triéesx)
done; ;

4. Quelle est la complexité du tri ? Préciser le pire cas et le meilleur cas.
On note que la fonction taille est un O(¢) o ¢ est la taille de la pile et 1a fonction indice_plus_grande_crepe_bis
est un ®O(n) ou n est I'indice apres lequel la fonction ignore les éléments (en supposant que celui-ci est plus
petit que la taille de la pile). La fonction retourne quant a elle est un ©(7) ou1 i est son argument, la position
de la spatule.
A Titération i, la boucle for dans tri_crepes effectue :

m Une recherche de maximum parmi n — 1 — i éléments, ce qui est linéaire en ¢ — 1 — 1.

m Un retournement qui affecte j éléments. Dans le pire cas, j est toujours ¢ — 1 — i, donc c’est linéaire
enn—1-1i.

®m Un retournement qui affecte ¢ — 1 — i éléments.

Au total la complexité de chaque itération est majorée a partir d'un certain rang par A; = (¢ — 1 — 1) avec A;
une certaine constante positive et minorée par B; = (¢ — 1 — i) avec B; une certaine constante positive.

On considere A = max;A; et B = min;B;. Alors la complexité C(¢) de la boucle vérifie a partir d'un certain

t-1 -1
rangBZt—l—i < C(t) SAZt—l—i.
i=0 i=0
-1 t-1
Par un changement d’indice j = ¢t — 1 — i on se raméne a B Z J <C(t) £ A),j, ce quon peut simplifier :
j=0 j=0
t2—t t2—t
B <C(t)<A R

=

Pour conclure proprement, on peut retirer le terme négatif a droite et indiquer que t2 — ¢ > =¢2 & partir du

[\

moment o1 £ > 2.
B A
On a donc a partir d’un certain rang (plus grand que 2), th <C(t) < Etz. On a montré que C(¢) = O(¢?).

Ici la complexité ne peut pas étre mieux que O(n?), ni pire, puisque les appels
indice_plus_grande_crepe_bis p (n-1-i) et retourne p (n-1-i) font le méme nombre d’opérations peut
importe la forme de la pile. La seule opération qui peut varier selon l'ordre des éléments dans la pile est
retourne p j.
Le meilleur cas est donc quand j est toujours le plus petit possible, c’est a dire quand la pile est daja triée
avec les plus grandes crépes dans le haut. Le pire cas est quand j est toujours le plus grand possible, quand
la pile est déja triée.

5. Faire la preuve de correction totale de l'algorithme de tri de crépes.
Dans cette question on veut prouver ’algorithme lui-méme, donc la fonction tri_crepes. On supposera que les
fonctions taille, indice_plus_grande_crepe_bis et retourne sont correctes.
La fonction tri_crepes termine puisqu’elle ne contient qu'une boucle for et des appels de fonctions qui ter-
minent.
Un invariant de la fonction est : "A la fin de itération i, les crépes situées entre les indicesn —1—ietn — 1
sont triées et les autres crépes sont de diametre plus petit que la crépeenn — 1 —1".
A litération i = 0, j vaut l'indice de la plus grande crépe de la pile. retourne p j met la plus grande crépe en
haut de la pile et retourne p (n-1-i) la met en position n —1—1 = n — 1. Donc les crépes entre les indices n — 1
et n — 1 sont triées (il n’y en a qu'une) et toutes les autres crépes sont de taille plus petite puisque c’était la
plus grande.
Supposons le résultat a la fin d'une itération i et placons nous a l'itération i + 1. j devient l'indice de la plus
grande crépe entre les indices 0 et n — i — 2, qu'on appelera c.
D’apres l'invariant, le diametre de cette crépe est inférieur a celui de la crépe en position n — 1 — i. Ensuite
retourne p j met la crépe ¢ en haut de la pile et retourne p (n-1-i) la met en positionn — 2 —i.

MP2I - Lycée Carnot - 2024/2025 Informatique - DS4 9,@

Les crépes entre n — 1 et n — 1 — i n’ont pas été bougées par 'itération i + 1. Puisqu’elles étaient triées elles
le sont toujours, et puisque c est plus petite que chacune d’entre elles, la pile est maintenant triée entre les
indicesn —letn —2 —1.

De plus par maximalité de ¢ parmi les indices 0 4 n — 2 —i, toutes les autres crépes sont plus petites que celles
déja triées. Notre propriété tient toujours.

Pour conclure, I'invariant est toujours vrai a la fin de la derniére itération, pour i = n — 1 et indique "Les
crépes situées entre les indices n — 1 — (n — 1) = 0 et n — 1 sont triées et les autres crépes sont de diameétre

NN

plus petit que la crépeenn — 1 — (n — 1)", ce qui est équivalent & "Toutes les crépes sont triées.".
Ainsi notre fonction effectue bien un tri de la pile de crépes.

	Questions de cours
	Exercices en C
	Exercices en Ocaml

